
Undo Trees and Git Simulation: An Application
of Trees in Modeling Change History with

Branching Operations
Philipp Hamara - 13524101

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail: philipphamara420@gmail.com, 13524101@std.stei.itb.ac.id

Abstract— A vital component of modern software is the
undo/redo system, which maintains consistency and prevents
permanent mistakes. Standard undo/redo systems using a
linear model often risk data loss when navigating between
different branches of changes. Undo Trees address this issue by
preserving the entire version history in a branching structure.
A similar concept underlies version control systems like Git,
which use tree-based branching to support collaboration
and maintain code history. This paper presents a practical
and visual implementation of both Undo Trees and a Git
simulation, using concepts from Discrete Mathematics —
specifically tree structures — to model branching histories in
change-tracking systems.

Keywords—Undo Trees, Git, Version Control System

I. INTRODUCTION

Tracking change history in software is essential for main-
taining consistency and enabling recovery of previous states.
Undo and redo operations are key features that allow users to
reverse or revisit changes. Most modern software implements
undo/redo using a linear model based on a stack data
structure. While efficient, this approach has limitations —
particularly when a user makes edits to an earlier state, which
can lead to overwriting alternate versions and losing data
from diverging histories. These drawbacks have motivated
the exploration of more flexible approaches to modeling
change history.

One such approach is the concept of Undo Trees, intro-
duced and popularized by the Vim text editor in 2010. Undo
Trees use a nonlinear model where edits to past states create
new branches instead of discarding alternative futures, thus
preserving the entire change history. Despite its power, this
branching undo system has not gained mainstream adoption
due to its complexity and lack of intuitive behavior compared
to the standard linear model.

A similar principle is also applicable in version control
systems like Git, which manage project histories through
branching and merging. In Git, branches allow multiple lines
of development to coexist, enabling collaboration, exper-
imentation, and rollback without data loss—features that
are essential in modern software development workflows.

Both systems fundamentally rely on tree-like structures to
represent diverging and evolving states over time.

This paper presents a basic implementation of both an
Undo Tree and a Git simulation, with interactive and visual
features. The model is built upon the Discrete Mathematics
concept of trees, showcasing a practical and instructive appli-
cation of theoretical structures in software design. Through
this work, the author aims to bridge theoretical understanding
and functional implementation in the context of change
tracking.

II. THEORETICAL BASIS

A. Graph

A graph is a structure that represents discrete objects (ver-
tices) and the relationships between those objects (edges).
Graph G is defined as G = (V, E), where V is a non-empty
set of vertices, and E is a set of edges connecting pairs of
vertices.

Based on the orientation of edges, graphs are classified
into two types:

1) Undirected graph
An undirected graph is a graph where the edges do not
have a specific direction.

2) Directed graph
A directed graph is a graph where each edge has a
specific direction.

Fig. 1. Illustration of an undirected graph (G1) and a directed graph (G2).
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf

There are a few graph terminologies that are important in
this paper:

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025

mailto:philipphamara420@gmail.com
mailto:13524101@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf


1) Path
A path in a graph is a sequence of vertices connected
by edges, traversing from one vertex to another.

Fig. 2. 0, 6, 3, 7, 9, 10 path is the path from vertex 0 to 10
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf

2) Cycle or Circuit
A cycle (or circuit) is a path that starts and ends at the
same vertex.

Fig. 3. 0, 4, 8, 5, 1, 0 path is a circuit
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf

3) Connected
Two vertices v1 and v2 are said to be connected if
there is a path from v1 to v2.

4) Connected graph
A connected graph is a type of graph in which every
vertex can be reached from any other vertex through
one or more paths.

Fig. 4. Illustration of connected and unconnected graphs
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf

B. Tree

A tree is an undirected graph that is connected and does
not contain any circuits (cycles). A rooted tree is a tree in
which one of its vertices is designated as the root, and its
edges are assigned directions to form a directed graph.

Fig. 5. Illustration of a rooted tree
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
24-Pohon-Bag2-2024.pdf

Rooted trees have several fundamental terminologies to
describe their structure and relationships:

1) Child and Parent
A vertex v1 is a child of vertex v2 if there is a directed
edge connecting v2 to v1. The originating vertex v2 is
the parent of v1.

2) Path
A path is a sequence of vertices and edges from a
starting vertex to a destination vertex.

3) Ancestor
A vertex v1 is an ancestor of vertex v2 if there is a
path from v1 to v2. In other words, the ancestors of a
vertex v2 are all vertices along the path from the root
to v2.

4) Sibling
Vertices v1 and v2 are called siblings if they share the
same parent.

5) Leaf
A leaf is a vertex that has no children, i.e., it has a
degree of zero.

C. Undo Tree

The concept of the Undo Tree was introduced in Vim 7.0,
which transitioned from using a simple stack-based undo
model to a tree-based approach for tracking changes. In this
model, the root node represents the original state of the file
(i.e., with no edits). Each time a change is made, a new node
is added as a child of the current state. This allows for the
creation of a branching history that reflects multiple possible
editing paths.

In a traditional linear undo system, if a user makes a new
edit after undoing a change, the previous future states are
discarded. This results in the loss of potentially important
alternative versions. The Undo Tree overcomes this limitation
by preserving those alternative futures as branches, allowing
users to return to and continue from any point in the editing
history.

The path from the root node to the current leaf node repre-
sents the sequence of changes leading to the current file state.
Standard undo (‘u‘) and redo (‘<C-r>‘) commands traverse
this path linearly, mimicking the behavior of conventional
editors. However, if a user introduces a new change from an

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf


earlier node, Vim spawns a new branch rather than erasing
future nodes, ensuring the entire history is retained.

Furthermore, Vim offers additional navigation commands
such as ‘g-‘ and ‘g+‘, which move backward and forward
through changes in the order they were made, regardless of
their position in the tree. This provides users with a more
flexible and powerful system for exploring and recovering
past states.

Fig. 6. Undo Tree visualization in Gundo.vim plugin
Source:

http://advancedweb.hu/never-lose-a-change-again-undo-branches-in-vim/

D. Git

Version Control Systems (VCS) are essential tools in
software development, enabling individuals and teams to
track, manage, and coordinate changes to code and other
digital assets. Among the various VCS available, Git has
emerged as the most widely used, known for its speed,
flexibility, and support for distributed collaboration.

Git was developed by Linus Torvalds in 2005 to manage
the Linux kernel’s source code. As a distributed version
control system, Git allows every contributor to maintain a
complete local history of the project, supporting independent
development and robust merging capabilities.

At the core of Git’s functionality lies a tree-based structure
that represents the evolution of a project through commits.
Each commit in Git is a snapshot of the project at a
specific point in time and is identified by a unique hash.
Commits are linked together to form a directed acyclic graph
(DAG), where each node points to one or more parent nodes,
depending on whether it results from a linear update or a
merge operation.

Branches in Git are lightweight pointers to specific com-
mits, allowing parallel lines of development. This enables
developers to experiment with new features without affecting
the main codebase. When a feature is complete, it can be
merged back into the main branch, integrating the separate
line of development. The process of merging often introduces
commits with multiple parents, capturing the history of both
branches in the DAG.

Fig. 7. Git Logo
Source:

https://git-scm.com/downloads/logos

The core features of Git to be simulated in this paper are:
• Commits as nodes in trees
• Branches
• Creating commits
• Checkout
• Merging

III. IMPLEMENTATION

This section outlines the development of two interactive
simulations: a text-based Undo Tree system and a Git-
like version control simulator. Both applications are imple-
mented in Python and make extensive use of object-oriented
programming (OOP) principles. The tkinter module is
utilized to build graphical user interfaces (GUIs), allowing
visual interaction with the underlying tree structures.

A. Text-Based Undo Trees

To demonstrate how an undo system can preserve branch-
ing histories, a simplified text editor was created. Each word
input is treated as a new state. Whenever a user presses
Space or Enter, a new node is appended to the tree,
preserving the full editing history. If a change is made after
an undo, a new branch is formed instead of overwriting prior
states.

1) TreeNode Class: The core data structure is a
TreeNode class, representing a single text state. Each node
contains:

• The current state of the text.
• A reference to its parent (previous state).
• A list of children (future branches).
This structure reflects the tree concept in Discrete Mathe-

matics, where nodes represent elements and edges represent
the transitions between versions. The add_state() method is
used to create and link a new node as a child of the cur-
rent node, preserving the full history and allowing multiple
possible futures to coexist.

1 class TreeNode:
2 def __init__(self, text_state, parent=

None):
3 self.text_state = text_state
4 self.parent = parent
5 self.children = []
6

7 def add_state(self, new_text):
8 new_node = TreeNode(new_text, parent=

self)
9 self.children.append(new_node)

10 return new_node

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025

http://advancedweb.hu/never-lose-a-change-again-undo-branches-in-vim/
https://git-scm.com/downloads/logos


2) UndoTreeApp Class: The UndoTreeApp class im-
plements an interactive text editor that uses the TreeNode
structure to model its undo and redo functionality as a tree.
Unlike a conventional linear undo stack, this application
allows branching at any point in history. Each time the user
makes a new change, a new TreeNode is created as a
child of the current node. The application preserves previous
branches, allowing users to revisit and continue from any
prior state.

At a high level, the class is composed of the following
parts:

• Initialization (__init__):
Sets up the GUI layout, initializes the root node of the
tree, and connects widgets like the text editor, undo/redo
buttons, and the listbox that visually represents the tree.

1 def __init__(self, master):
2 self.master = master
3 self.master.title("Undo Tree Text

Editor")
4 self.master.configure(bg=’#0f1117’)
5 self.master.geometry("1200x600")
6

7 self.root_node = TreeNode("")
8 self.current_node = self.root_node
9

10 self.last_text = self.root_node.
text_state

11

12 # Stack for redo
13 self.redo_stack = []
14

15 # Manual 50-50 split
16 self.editor_frame = tk.Frame(self.

master, bg=’#1e1e2e’)
17 self.editor_frame.place(relx=0, rely

=0, relwidth=0.5, relheight=1)
18

19 self.tree_frame = tk.Frame(self.
master, bg=’#0f1117’)

20 self.tree_frame.place(relx=0.5, rely
=0, relwidth=0.5, relheight=1)

21

22 # Editor widgets
23 self.text_label = tk.Label(self.

editor_frame, text="Current Text:"
, bg=’#1e1e2e’, fg=’#f1f1f1’, font
=("Helvetica", 32))

24 self.text_label.pack(anchor=’w’, padx
=10, pady=(10, 0))

25

26 self.text_display = tk.Text(self.
editor_frame, height=10, bg=’#2
b2d42’, fg=’#ffffff’,
insertbackground=’white’, font=("
Consolas", 32), bd=0, relief=tk.
FLAT)

27 self.text_display.pack(fill=tk.BOTH,
expand=True, padx=10, pady=(0, 10)
)

28 self.text_display.bind(’<KeyRelease-
Return>’, self.on_text_change)

29 self.text_display.bind(’<KeyRelease-
space>’, self.on_text_change)

30 self.text_display.bind(’<KeyRelease>’

, self.track_last_text)
31 self.text_display.bind(’<Control-z>’,

self.ctrl_z_handler)
32 self.text_display.bind(’<Control-y>’,

self.ctrl_y_handler)
33

34 button_frame = tk.Frame(self.
editor_frame, bg=’#1e1e2e’)

35 button_frame.pack(anchor=’w’, padx
=10, pady=(0, 10))

36

37 self.undo_button = tk.Button(
button_frame, text="Undo", command
=self.undo, bg=’#4c566a’, fg=’
white’, font=("Helvetica", 30, "
bold"), activebackground=’#5e81ac’
)

38 self.undo_button.pack(side=tk.LEFT,
padx=(0, 10))

39

40 self.redo_button = tk.Button(
button_frame, text="Redo", command
=self.redo, bg=’#4c566a’, fg=’
white’, font=("Helvetica", 30, "
bold"), activebackground=’#88c0d0’
)

41 self.redo_button.pack(side=tk.LEFT)
42

43 # Tree view widgets
44 self.tree_label = tk.Label(self.

tree_frame, text="Undo Tree", bg=’
#0f1117’, fg=’#81a1c1’, font=("
Helvetica", 32, "bold"))

45 self.tree_label.pack(pady=(10, 5))
46 self.tree_listbox = tk.Listbox(self.

tree_frame, bg=’#1a1d23’, fg=’#
d8dee9’, selectbackground=’#5e81ac
’, font=("Courier", 20), bd=0,
relief=tk.FLAT)

47 self.tree_listbox.pack(fill=tk.BOTH,
expand=True, padx=10, pady=(0, 10)
)

48 self.tree_listbox.bind(’<<
ListboxSelect>>’, self.
on_tree_select)

49

50 self.update_text_display()
51 self.update_tree_view()

• Text State Management:
The on_text_change() method listens for edits and ap-
pends a new TreeNode if the content has changed. This
creates a new branch in the undo tree.

1 def on_text_change(self, event=None):
2 new_text = self.text_display.get("1.0

", tk.END).rstrip(’\n’)
3 if new_text != self.last_text:
4 self.current_node = self.

current_node.add_state(
new_text)

5 self.last_text = new_text
6 self.redo_stack.clear()
7 self.update_tree_view()

• Undo and Redo Operations:
The undo() method moves to the parent node, while

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025



redo() restores a child node if it exists on the redo stack.
These operations update both the text editor and tree
view.

1 def undo(self):
2 if self.current_node.parent:
3 self.redo_stack.append(self.

current_node)
4 self.current_node = self.

current_node.parent
5 self.update_text_display()
6 self.update_tree_view()
7 else:
8 messagebox.showinfo("Undo", "

Already at the root node.")
9

10 def redo(self):
11 if self.redo_stack:
12 redo_node = self.redo_stack.pop()
13 if redo_node.parent == self.

current_node:
14 self.current_node = redo_node
15 self.update_text_display()
16 self.update_tree_view()
17 else:
18 messagebox.showinfo("Redo", "

Redo path no longer valid.
")

19 else:
20 messagebox.showinfo("Redo", "

Nothing to redo.")

• Tree View Update:
The update_tree_view() and build_tree_list() methods
recursively display the tree structure using text-based
indentation. The currently active node is annotated with
← CURRENT.

1 def update_tree_view(self):
2 self.tree_listbox.delete(0, tk.END)
3 self.node_list = []
4 self.build_tree_list(self.root_node,

"", True)
5

6 def build_tree_list(self, node, prefix=""
, is_last=True):

7 connector = "+-- " if is_last else "
|-- "

8 display = f"{prefix}{connector}{repr(
node.text_state)}"

9 if node == self.current_node:
10 display += " <-- CURRENT"
11 self.tree_listbox.insert(tk.END,

display)
12 self.node_list.append(node)
13

14 child_count = len(node.children)
15 for i, child in enumerate(node.

children):
16 next_prefix = prefix + (" " if

is_last else "| ")
17 self.build_tree_list(child,

next_prefix, i == child_count
- 1)

• Tree Navigation:
The on_tree_select() function allows users to click on

any past version in the tree and restore the correspond-
ing text state.

1 def on_tree_select(self, event):
2 if not self.tree_listbox.curselection

():
3 return
4 index = self.tree_listbox.

curselection()[0]
5 selected_node = self.node_list[index]
6 self.current_node = selected_node
7 self.update_text_display()
8 self.update_tree_view()

3) Results: Using the program, users can interactively
observe how each editing action contributes to the formation
of a branching undo history.

The left pane of the application is the interactive text
editor, where users can type and modify text. Every time
the user presses the Space or Enter key, a snapshot of
the current text is taken and stored as a new node in the
undo tree. This mimics a lightweight commit mechanism,
allowing users to observe how each action translates into a
new state in the tree structure.

The right pane of the application displays this structure
as an indented tree, where each line corresponds to a node
(state), and the indentation reflects the node’s depth in the
tree. The active state is highlighted with a <- CURRENT
annotation. This visual representation allows users to in-
tuitively explore nonlinear editing histories and understand
how different sequences of actions evolve into multiple
branches, rather than overwriting each other.

Fig. 8. Screenshot of the Undo Tree Text Editor program
Source:

Author’s archive

As seen in Fig. 8., initially the tree is still empty ex-
cept for the root node, the editing process begins with
the text "Hello ". From this base state, the user first
writes "Hello world ", creating the first branch. After
undoing, a second variation "Hello there " is written,
forming a sibling branch. Another two undos are performed,
and this time the user writes "Goodbye ", creating a
second branch from the root node. Using the interactive and
clickable tree view on the right side, a final variant "Hello

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025



again " is added from the "Hello branch. This shows
how each edit from a previous state results in a new branch,
preserving all alternative histories. The current state, marked
by <- CURRENT, is at "Hello again ", illustrating the
tree-like, non-linear structure of the undo history.

B. Git Simulation

To illustrate version control principles, a Git simulation
was implemented. It allows users to perform basic Git
operations such as commit creation, branching, checkout, and
merging.

1) CommitNode Class: The CommitNode class models
each Git commit. It contains:

• A unique commit ID (randomized string).
• A commit message.
• A reference to one or more parent commits.
• A list of children (next commits).
• Branch metadata for visualization.

This models Git’s real-world commit DAG structure,
where merge commits have multiple parents.

1 # Generate a short random commit hash
2 def generate_commit_id():
3 return ’’.join(random.choices(string.

hexdigits[:16], k=7))
4

5 class CommitNode:
6 commit_counter = 0
7

8 def __init__(self, message, parents=None,
branch=’main’):

9 self.id = generate_commit_id()
10 self.message = message
11 self.parents = parents if parents

else []
12 self.children = []
13 self.branch = branch
14 self.order = CommitNode.

commit_counter
15 CommitNode.commit_counter += 1
16

17 def add_child(self, message, branch=None)
:

18 new_commit = CommitNode(message,
parents=[self], branch=branch or
self.branch)

19 self.children.append(new_commit)
20 return new_commit

2) GitSimulationApp Class: The GitSimulationApp
class provides an interactive interface to simulate core Git
operations like making commits, switching branches, and
merging. It mirrors Git’s internal structure using a tree-like
model where each commit is a node, and branches are visual
paths of development.

The GitSimulationApp class simulates Git opera-
tions, including:

• Commits: Creating new commits as children of the
current node.

1 def commit(self):

2 message = simpledialog.askstring("
Commit Message", "Enter commit
message:")

3 if message:
4 new_commit = self.head.add_child(

message, branch=self.
current_branch)

5 self.branches[self.current_branch
].append(new_commit)

6 self.head = new_commit
7 self.update_view()

• Branching: Generating a new branch from the current
commit.

1 def create_branch(self):
2 name = simpledialog.askstring("New

Branch", "Enter new branch name:")
3 if name and name not in self.branches

:
4 self.branches[name] = [self.head]
5 self._log(f"Branch ’{name}’

created at commit {self.head.
id}\n")

6 self.update_view()

• Checkout: Moving the HEAD pointer to a different
branch tip.

1 def switch_branch(self):
2 name = simpledialog.askstring("Switch

Branch", "Enter branch name:")
3 if name in self.branches:
4 self.current_branch = name
5 self.head = self.branches[name

][-1]
6 self._log(f"Switched to branch ’{

name}’\n")
7 self.update_view()
8 else:
9 messagebox.showerror("Error", "

Branch does not exist.")

• Merging: Creating a new commit node with multiple
parents.

1 def merge_branch(self):
2 name = simpledialog.askstring("Merge

Branch", "Enter branch to merge:")
3 if name in self.branches and name !=

self.current_branch:
4 other_head = self.branches[name

][-1]
5 merge_commit = CommitNode(f"Merge

{name} into {self.
current_branch}", parents=[
self.head, other_head], branch
=self.current_branch)

6 self.head.children.append(
merge_commit)

7 other_head.children.append(
merge_commit)

8 self.branches[self.current_branch
].append(merge_commit)

9 self.head = merge_commit
10 self.update_view()
11 self._log(f"Merged branch ’{name

}’ into ’{self.current_branch
}’\n")

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025



12 else:
13 messagebox.showerror("Error", "

Invalid branch.")

3) Results: The Git simulation enables users to interact
with a simplified Git-like model where they can create
branches, make commits, and perform merges. Each commit
is represented as a node containing a truncated hash, a
commit message, and the branch it belongs to. The re-
lationships between commits—including parent-child links
and merges—are maintained to reflect the underlying tree
structure of Git.

• Left Pane – Branches: This panel lists all existing
branches. The currently active branch is highlighted,
and users can click on any branch to check it out. This
visually reinforces Git’s ability to manage multiple lines
of development.

• Middle Pane – Commit History: This section displays
the commit tree. Each commit is represented by its short
hash, message, and the branch it belongs to. Indenta-
tion reflects parent-child relationships. Merge commits,
which have multiple parents, are also displayed here,
providing a clear visual of how branches diverge and
converge.

• Right Pane – Command Panel: The rightmost panel
contains interactive buttons and input fields to per-
form operations such as creating a commit, switch-
ing branches, and merging. Users can type commit
messages or new branch names, then press buttons
to execute Git operations. The interface immediately
reflects these actions in the branch and commit views.

Fig. 9. Screenshot of Git Simulation program
Source:

Author’s archive

As seen in Fig. 9., the Git simulation begins with the
default main branch and an Initial commit. Two con-
secutive commits, Commit 1 and Commit 2, are made on
this main branch. Afterward, a new branch named branch1
is created and checked out. A new commit, Commit 3, is
added on branch1, branching off from Commit 2.

The user then checks out the main branch again and
performs a merge with branch1. This creates a merge

commit on the main branch with two parents: one from the
end of main and one from the latest commit in branch1.
The structure is clearly displayed in the middle pane (Com-
mit History), showing the divergence and convergence of
branches.

IV. CONCLUSION

Through the implementation of both an Undo Tree and
a Git simulation, this paper demonstrates the practical ap-
plication of tree structures—one of the core concepts in
Discrete Mathematics—in solving real-world problems. The
undo tree model provides a nonlinear and lossless editing
history, while the Git simulation helps in visualizing how
branching, merging, and commit tracking work under the
hood in modern software development tools.

However, these implementations also reveal important lim-
itations. One of the main concerns is space efficiency—since
every edit or commit is stored as a new node, the memory
usage grows rapidly with the number of operations, which
may become impractical in larger applications.

From a usability and robustness perspective, error handling
in the current implementations remains basic. Undo opera-
tions may become unintuitive in complex trees, and merging
logic does not resolve content-level conflicts like real Git
systems do.

Despite these shortcomings, this work successfully bridges
theory and practice. It shows how a fundamental structure
like a tree can be repurposed for real software problems,
reinforcing the importance of Discrete Mathematics in com-
puter science.

V. SUGGESTION

For future developments based on this work, the author
suggests several directions of exploration to deepen both the
theoretical and practical understanding of Undo Trees and
Version Control Systems:

• Memory and Performance Analysis: Future research
can include an in-depth comparison of memory usage
and time complexity between linear undo stacks and
tree-based undo models. This would provide valuable
insight into their trade-offs in real-world applications,
particularly in performance-critical software.

• More Complete Git/VCS Simulation: The current
simulation covers only basic features such as commits,
branches, and merges. Expanding this to include other
Git concepts would provide a more comprehensive
learning tool and better reflect actual usage.

• Full-Scale Integration with Editors or IDEs: Another
valuable direction would be integrating the undo tree
system or Git simulation into a full-scale text editor or
IDE plugin. This would allow users to experience the
practical implications of tree-based change tracking in
everyday software development environments.

By pursuing these directions, students and developers
can not only gain a stronger grasp of discrete mathematics
applications but also build more powerful tools for real-world
collaborative software development.

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025



APPENDIX

The GitHub repository for this paper can
be accessed at https://github.com/philipphqiwu/
Makalah-IF1220-UndoTrees-GitSimulation.

ACKNOWLEDGMENT

The author expresses his heartfelt gratitude to Dr. Ir.
Rinaldi, M.T., his lecturer for Discrete Mathematics at Ban-
dung Institute of Technology, for his comprehensive teaching
which laid down the groundwork for understanding the
concepts applied in this paper.

The author would also like to thank his friends and family
for all the support they have shown throughout his journey
as a student at ITB.

Lastly, the author would like to show his appreciation
to the youtuber Tom Scott for getting him into computer
science and as the source of inspiration for the topic of this
paper. Mainly inspired from a small part of his video "The
Worst Typo I Ever Made": https://www.youtube.com/watch?
v=X6NJkWbM1xk.

REFERENCES

[1] Munir, Rinaldi. 2024. “Graf (Bagian 1)”. Department of Informatics,
Institut Teknologi Bandung, 2024-2025, [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf. [Accessed: Jun. 18, 2025].

[2] Munir, Rinaldi. 2024. “Pohon (Bagian 1)”. Department of Informatics,
Institut Teknologi Bandung, 2024-2025, [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
23-Pohon-Bag1-2024.pdf. [Accessed: Jun. 18, 2025].

[3] Munir, Rinaldi. 2024. “Pohon (Bagian 2)”. Department of Informatics,
Institut Teknologi Bandung, 2024-2025, [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
24-Pohon-Bag2-2024.pdf. [Accessed: Jun. 18, 2025].

[4] Csákvári, Dávid. "Never lose a change again – Undo branches in
Vim," Advanced Web, [Online]. Available: https://advancedweb.hu/
never-lose-a-change-again-undo-branches-in-vim/. [Accessed: Jun.
18, 2025].

[5] Worsley, Summer. What is Git? - The Complete Guide to
Git," Datacamp, [Online]. Available: https://www.datacamp.com/blog/
all-about-git. [Accessed: Jun. 19, 2025].

[6] Sharma, Rajat. “Getting Started with Trees in Python – A Beginner’s
Guide,” Medium, [Online]. Available: https://medium.com/pythoneers/
getting-started-with-trees-in-python-a-beginners-guide-4e68818e7c05.
[Accessed: Jun. 19, 2025].

STATEMENT

Hereby, I declare that this paper I have written is my own
work, not an adaptation or translation of someone else’s

paper, and not a product of plagiarism.

Bandung, 20 July 2025

Philipp Hamara
13524101

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025

https://github.com/philipphqiwu/Makalah-IF1220-UndoTrees-GitSimulation
https://github.com/philipphqiwu/Makalah-IF1220-UndoTrees-GitSimulation
https://www.youtube.com/watch?v=X6NJkWbM1xk
https://www.youtube.com/watch?v=X6NJkWbM1xk
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://advancedweb.hu/never-lose-a-change-again-undo-branches-in-vim/
https://advancedweb.hu/never-lose-a-change-again-undo-branches-in-vim/
https://www.datacamp.com/blog/all-about-git
https://www.datacamp.com/blog/all-about-git
https://medium.com/pythoneers/getting-started-with-trees-in-python-a-beginners-guide-4e68818e7c05
https://medium.com/pythoneers/getting-started-with-trees-in-python-a-beginners-guide-4e68818e7c05

	INTRODUCTION
	THEORETICAL BASIS
	Graph
	Tree
	Undo Tree
	Git

	IMPLEMENTATION
	Text-Based Undo Trees
	TreeNode Class
	UndoTreeApp Class
	Results

	Git Simulation
	CommitNode Class
	GitSimulationApp Class
	Results


	CONCLUSION
	SUGGESTION
	References

